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Finite volume scheme for the lattice Boltzmann method on unstructured meshes
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A finite volume scheme for the lattice Boltzmann method is developed for unstructured triangular meshes in
two dimensions. The accuracy of this new scheme is demonstrated by comparing the numerical results with the
exact solutions to the Navier-Stokes equations for Taylor vortex flow, shear flow between two parallel plates,
shear flow between two rotating cylinders, and Poiseuille flow. The agreement between the numerical and
analytical results is very good for each of these tests.@S1063-651X~99!07804-6#

PACS number~s!: 47.10.1g, 47.11.1j, 05.20.Dd
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I. INTRODUCTION

In recent years the lattice Boltzmann method~LBM ! has
attracted much interest in the physics and engineering c
munities. As a different approach from the convention
computational fluid dynamics~CFD!, the LBM has been
demonstrated to be successful in simulations of fluid fl
and other types of complex physical systems@1–4#. In par-
ticular, this method is promising for simulations of mult
phase and multicomponent fluid flow involving complex i
terfacial dynamics@5–9#. Unlike the conventional CFD tha
directly simulates evolution of the macroscopic Navie
Stokes equations, the LBM is based on the mesoscopic
netic equation for the single particle distribution function.
has been proven that the Navier-Stokes equations can b
covered from the LBM at the macroscopic level@1,2#. The
obvious advantages of using LBM are the simplicity of pr
gramming, the parallelism of the algorithm, and the capa
ity of incorporating complex microscopic interactions.

Historically, the LBM was developed from the lattice g
automaton~LGA! @10# model. In an LGA model, the dynam
ics of particles consists of two steps:~1! particles at the same
site collide according to a set of hard-sphere particle co
sion rules that conserve mass, momentum, and energy~for
multispeed models! at each lattice site;~2! after collision,
particles advance to the next lattice site in the direction
their velocities. The small number of discrete velocities
lowed in the LGA models is tightly coupled with the spati
lattice structure. At its earliest development stage, the LB
was a floating-point version of the LGA model where t
particle distribution function in the LBM was interpreted
the floating-number counterpart of the Boolean particle
cupation in the LGA. Two important improvements to e
hance the computational efficiency were made later. T
were the linearization of the collision operator@11# and the
adoption of the single time relaxation approximation@12# ~or
the BGK approximation@13#!. Nevertheless, the requireme
of using uniform spatial lattice structure was still unchang
until very recently.

In the commonly used LBM models, as in their LG
precursors, the discrete velocity directions are associ
with the structure of the underlining spatial lattice. For e
ample, in a two-dimensional square lattice one uses n
PRE 591063-651X/99/59~4!/4675~8!/$15.00
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velocities—eight velocities pointing to the nearest neighb
plus one rest velocity; in a two-dimensional triangular latti
seven velocities are used—six directions for the velocit
point to the nearest neighbors along with a rest velocity. T
arrangement of the discrete velocities prescribes that par
density distributions move exactly from one lattice point
an adjacent point.

To remove this constraint, during the past few years s
eral workers have extended the LBM models to use irregu
lattices. Succi and his collaborators@14# were the first to
propose a finite-volume formulation of the lattice Boltzma
equation~LBE! using the idea of a finite-volume method
They begin from the differential form of the LBE and app
Gauss’ theorem to a set of macrocells covering the spa
domain. For each cell, a volume-averaged ‘‘coarse-gra
particle distribution is defined. By using either piecewise l
ear or piecewise constant interpolation procedures they
tain equations of the ‘‘coarse-grain’’ distribution. He, Lu
and Dembo@15# have proposed a model for an arbitrary b
logically rectangular mesh. In this model, collisions still ta
place on the grid nodes as in the ordinary LBM mode
After a collision, the density distributions move along the
respective velocities to points which in general will not
exactly on the grid nodes. An interpolation step is thus int
duced in this model to determine the density distributions
the grid nodes for the next time step and the above pro
dures are repeated.

In the above-mentioned approaches of using nonunifo
lattices, the lattice connectivity is still restricted to be stru
tured. For example, in the two-dimensional simulations
previous workers, logically rectangular mesh structures w
mostly used@14,15# in association with nine discrete veloc
ties, though the meshes were not the regular square lat
This is in contrast to the situation in the modern CFD tec
niques which are generally capable of accommodating fa
complex meshes. In this paper we describe a computati
scheme based on two-dimensional unstructured meshes
the point of view of finite volume methods.

This paper is organized as follows. In Sec. II we spec
the finite-volume LBM scheme~a brief description of this
model was reported in Ref.@16#!. As examples of tests o
this new scheme, numerical simulations for two-dimensio
Taylor vortex flow, shear flows between two parallel plat
4675 ©1999 The American Physical Society
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and two rotating cylinders as well as Poiseuille flow will b
presented in Sec. III. Section IV contains some comparis
with other methods and concluding remarks.

II. FINITE VOLUME LBM MODEL

Our starting point is the LBE. Recently, it is shown@17#
that the LBE can be directly derived from the Boltzma
equation by discretization in phase space without borrow
the concept of particles jumping from site to site as in
LGA model. The commonly used LBM models can be r
garded as specific discretizations of the LBE on regular
tices. More general finite difference discretizations of t
LBE were studied in Ref.@18# and have been extended
efficient parallel schemes@19#. The flexibility gained in un-
locking the spatial and velocity lattices from each other p
vides us with an important degree of freedom in design
our finite-volume scheme.

The LBE reads as follows after discretizing the veloc
space:

] f i

]t
1vi•“ f i5V i , ~1!

where f i is the particle distribution function associated wi
motion along thei th direction in velocity space,vi the ve-
locity in the i th direction,i 51,2, . . . ,m with m the number
us
ur
nt
e

s
e

s

g
e
-
t-
e

-
g

of different velocities in the model, andV i is the collision
operator. One commonly used model is the lattice BG
model @13#, which uses the single time relaxation approx
mation, i.e.,

V i52
1

t
~ f i2 f i

eq!, ~2!

where f i
eq is the local equilibrium distribution andt is the

relaxation time.f i
eq is carefully constructed so that the ve

locity moments of the LBE reproduce the Navier-Stok
equations.

It should be pointed out that in the phase space the sp
variablex and the velocity variablev are independent. In the
LBM, only a small set of discrete velocities are used to a
proximate the Boltzmann kinetics of the continuum veloci
In the original formulations of the LBM, it was understoo
that the discretization of momentum space is coupled w
that of real space. But as emphasized in Refs.@20,17,18#, this
coupling is not necessary and both discretizations can
done independently. Here we will completely decouple th
two discretization procedures by choosing the nine veloci
as in the nine-bit model@12# for the velocity discretization
while using arbitrary triangular meshes for the spatial d
cretization.

The nine discrete velocities are defined by
vi5H ~0,0!, i 50,

~cos@~ i 21!p/2#,sin@~ i 21!p/2# !, i 51,2,3,4,

A2~cos@~ i 25!p/21p/4#,sin@~ i 25!p/21p/4# !, i 55,6,7,8
~3!
po-
ral

the
o
.

n
e
.

in
and the equilibrium distributionf i
eq is given by@12#

f i
eq5wir@11 3

2 ~vi•u!1 9
2 ~vi•u!22 3

2 uuu2#, ~4!

where

r5(
i

f i , ~5!

u5(
i

f ivi /r ~6!

are the density and velocity, respectively, and

wi5H 4/9, i 50,

1/9, i 51,2,3,4,

1/36, i 55,6,7,8.
~7!

We choose two-dimensional triangular meshes to ill
trate how the finite-volume scheme is constructed. Fig
1~a! shows a generic situation in which triangular eleme
surround an interior grid node. The scheme we report her
a finite-volume method of the cell-vertex type@21#. In this
type of formulation, thef is at the nodes are the unknown
When we need to calculatef is at non-node positions, thes
values would be interpolated from thef is at the nodes using
-
e
s
is

.

standard interpolation procedures@22# according to the ele-
ment types in use. For example, linear and bilinear inter
lations could be applied to the triangular and quadrilate
elements, respectively.

We choose the control volume as the polygon around
nodeP as shown in Fig. 1~a!, known as the dual mesh. Tw
sides of the polygon,CE andED, are labeled in the figure
Here E is the middle point of edgePP2 and C is the geo-
metric center of elementPP1P2 with coordinates

xE5~xP1xP2
!/2, xC5~xP1xP1

1xP2
!/3. ~8!

Likewise,D is the center of elementPP2P3. The integration
volume consists of trianglesPCE, PED, etc., taken in coun-
terclockwise order. In the following we focus on integratio
over the trianglePCE. Similar integrations would be don
over all such triangles centered onP and the results summed

The integration of the first term in Eq.~1! is approximated
as

E
PCE

] f i

]t
ds5

] f i~P!

]t
APCE , ~9!

whereAPCE is the area of trianglePCE and f i(P) is the f i
value at nodeP. From now on, the node index is indicated
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parentheses following thef values. In the above equation, w
have made an approximation thatf i is constant over the tri-
anglePCE to prevent us from solving a large set of equ
tions if f is were assumed to be linear. This kind of ‘‘lum
ing’’ is commonly used in the finite volume metho
applications@21#.

Integration of the convection term of Eq.~1! gives fluxes
though the three edgesPC, CE, andEP:

E
PCE

vi•¹ f ids5vi•E
CE

f idl1I s ~10!

wheredl is normal to the integration edgeCE, andI s is the
fluxes through internal edges~e.g.,PC, PE). Since we will
sum over all the triangles likePCE, PED, the net flux
through internal edges~e.g., PC, PE) will cancel out and
not enter into the calculation. On the assumption that eacf i
varies linearly over each triangular element, the right ha
side of Eq.~10! becomes

E
PCE

vi•¹ f ids5vi•nCEl CE@ f i~C!1 f i~E!#/21I s ~11!

wherenCE is the unit vector normal to the edgeCE, andl CE
is the length of CE.

FIG. 1. ~a! Diagram of finite elements sharing one comm
node. HereP,P1 ,P2 , . . . ,P6 stand for the mesh grid points.CE
and ED are two boundary edges of the control volume~polygon!
over which integration of the PDE of Eq.~1! is performed.~b!
Diagram illustrating the half-covolume boundary condition meth
A,B,C are three nodes at walls,D andE are two fluid interior nodes
linked with wall nodeB. F, G, andH are the geometric center o
trianglesBDA, BED, andBCE, respectively, whileI , J, K, andL
are the center points of the corresponding edges. The covol
consists of the dashed triangles.
-

d

Since we use triangular elements,f i(C) and f i(E) must
be interpolated from the values at the three nodes of
elementPP1P2. The values atC and E are then linearly
interpolated as

f i~C!5@ f i~P!1 f i~P1!1 f i~P2!#/3, ~12!

f i~E!5@ f i~P!1 f i~P2!#/2. ~13!

For other types of elements, the above interpolation wo
be replaced with an appropriate interpolation. For exam
one could use bilinear interpolation for a discretization in
quadrilateral elements.

The integration over the third term of Eq.~1! @i.e., Eq.~2!#
results in the following formula, assuming the linearity off i

and f i
eq over the triangular elementPCE,

2E
PCE

1

t
~ f i2 f i

eq!ds52
APCE

t
$@ f i~P!2 f i

eq~P!#

1@ f i~C!2 f i
eq~C!#

1@ f i~E!2 f i
eq~E!#%/3, ~14!

where f i
eq(C) and f i

eq(E) are interpolated from the equilib
rium values at the three nodes at elementPP1P2 as follows:

f i
eq~C!5@ f i

eq~P!1 f i
eq~P1!1 f i

eq~P2!#/3, ~15!

f i
eq~E!5@ f i

eq~P!1 f i
eq~P2!#/2. ~16!

With these, the integration of Eq.~1! over the triangle
PCE is complete. The integration over the whole contr
volume is just the sum of all these terms over different
angles such asPCE, PED, etc. Therefore, a first-order ac
curacy time-stepping scheme for the update off i at nodeP is
given as follows:

f i~P,t1dt!5 f i~P,t !1
dt

AP
S ( collisions2( fluxesD

~17!

whereAP is the total area of the control volume around no
P. The terms ‘‘collisions’’ and ‘‘fluxes’’ refer respectively to
the finite-volume-integrated contributions from the collisio
term and the flux term. The summation is over different t
anglesPCE, PED, etc., associated with nodeP.

In all the computations we present in this paper, the
date of thef is at boundary nodes is similar to that for interi
nodes except at the boundary the corresponding covolu
are half-covolumes. LetA,B,C in Fig. 1~b! boundary nodes
andD, E interior fluid nodes linked with nodeB. We focus
on the update off is at nodeB. As for interior fluid nodes, we
updatef is atB by covolume integrals. However, the covo
ume is now not complete in the 2p directions, as shown in
Fig. 1~b! where F, G, and H are the geometric center o
trianglesBDA, BED, andBCE, respectively,I , J, K, andL
are the center points of the corresponding edges@see Fig.
1~b! and compare with Fig. 1~a!#. As for interior nodes, in-
tegrals of Eq.~1! over the covolume are carried out over th
smaller trianglesBLH, BHK . . . and BFI one by one.
There is only one difference, which occurs when integrat
the second term of Eq.~1! over trianglesBLH andBFI. The
flux terms over edgesBL andBI, which we omitted in the

.
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case of interior nodes@i.e., I s in Eq. ~11!# as they were in-
ternal fluxes, must now be included in the calculation. Th
are actually easy to evaluate as shown in Eq.~11! for fluxes
over edges.

III. NUMERICAL TESTS

We have conducted simulations using the finite-volu
scheme for two-dimensional Taylor vortex flow, shear flo
between two parallel plates and between two rotating cy
ders, and Poiseuille flow.

A. Two-dimensional Taylor vortex flow

As a first example, we simulate the evolution of the tw
dimensional Taylor vortex flow in a square domain with p
riodic boundary conditions in bothx and y directions. The
system has an initial state with velocity at position (x,y)
given by ux(x,y,0)52u0 cos(k1x)sin(k2y) and uy(x,y,0)
5u0(k1 /k2)sin(k1x)cos(k2y), wherek1 and k2 are given by
k152pm/L andk252pn/W. HereL andW are the length
and width of the system andm and n can be any integers
There is no driving force presented in the system and
velocities will decay their magnitudes as a function of tim
due to the viscous nature of the fluid. The velocity evoluti
is characterized by

ux~x,y,t !52u0 exp@2nt~k1
21k2

2!# cos~k1x!sin~k2y!,
~18!

uy~x,y,t !5u0~k1 /k2!exp@2nt~k1
21k2

2!# sin~k1x!cos~k2y!
~19!

according to the Navier-Stokes equation. Heren is the kine-
matic viscosity of the fluid.

Since the present model is expected to yield a faith
solution to the continuous LBE, we expect it will give th
same viscosity as the LBE. From Eq.~18! one can see tha
the decaying flow can be used to numerically determine
kinematic viscosity. We have simulated the flow using th
different types of meshes, depicted in Figs. 2~a!–2~c!. We
focus on the velocity change at one chosen node and plo
velocity decaying in the course of time in Fig. 3~a!. In this
example, the mesh used is of the type of Fig. 2~b!. The
system has a size ofL532 andW5128 and the mesh size i
1.0. Here r51.0, t51.0 and dt50.25. We use k1
5(2p/L), k254(2p/W) andu050.01. The linearity in the
semilogarithmic plot shows clearly that the velocity deca
exponentially and from the slope of the straight line in F
3~a! one can obtain the viscosity. Here we have chose
node whose coordinates arex5L/4 and y5W/2. We find
that the kinematic viscosity equal tot/3 for all the meshes
we have used, independent of the mesh sizes and mesh t
One should note that this result is nontrivial since oth
finite-volume schemes may introduce some numerical
cosity. Figure 3~b! shows the velocityuy(x) at time t550
for all the nodes with coordinatey5W/2 in a simulation with
r51.0, t50.1, anddt50.01. Here we take the same syste
sizes andK1 ,K2 as in Fig. 3~a!. The solid line in Fig. 3~b! is
the analytical solution@Eq. ~18!# with n5t/3, showing ex-
cellent agreement between the numerical and analytica
sults.
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B. Shear flows

Shear flow between two parallel plates is simulated us
the finite volume scheme. The system is a two-dimens
square domain with periodic boundary condition in thex
direction. Shear velocity along thex direction is applied at
the two boundaries located aty50 andy5W. We start from
an initial state where the velocity is zero everywhere in
system. The system is then exposed the external shear
the velocity field is calculated. Figure 4 shows thex compo-
nent of velocity after the system reaches the steady state
plot three sets of data corresponding to three types of me
shown in Figs. 2~a!–2~c! ~they are collapsing on top of eac
other!. Here we perform the simulations with a system
width W531 and lengthL531. The mesh size is in the orde
of 1.0 for all these meshes. The shear velocities are take
be 0.05 aty5W and 20.05 at y50. We uset50.5 and
dt50.01, and find that the steady state is reached afteT
550 000 time steps in the three cases. From Fig. 4 it is c

FIG. 2. Three types of meshes~a! triangular mesh,~b! Cartesian
mesh,~c! irregular mesh. Both~a! and ~b! are structured meshe
while ~c! is unstructured.
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that the computed velocities agree very well with the line
velocity profile of the exact solution to the Navier-Stok
equation.

To demonstrate the flexibility of the finite volume schem
we present another example of simulation of shear flow
tween two coaxial cylinders that also possesses an exac
lution for comparison. Figure 5 illustrates an irregular me
~actually we used much denser grids in the simulation tha
Fig. 5!. Note that for any irregular boundary geometry, it
always possible to cover the domain using triangular e
ments as we have done here for the two cylinders. The m
roscopic velocity field between two cylinders is taken to
zero initially. The outer cylinder then suddenly begins
rotate with a constant angular velocityV while the inner
cylinder is kept at rest for all times. Note that this particu
problem has a rotational symmetry so that an appropr

FIG. 3. ~a! Semilogarithmic plot of the velocityux @ log10(ux)#
decaying with time for one chosen node atx5L/4 andy5W/2. The
mesh used is of type Fig. 2~b!. The system has a size ofL532 and
W5128 and the mesh size is 1.0. Herer51.0, t51.0, dt50.25,
k152p/L, k258p/W and u050.01. ~b! ux(x,y5W/2) at t550,
compared with exact solution Eq.~18!. Here r51.0, t50.1, dt
50.01, k152p/L, k258p/W with L532 andW5128. The mesh
is of type Fig. 2~b! with grid size of 1.0.n5t/3 was used in the
solid line.
r

-
so-
h
in

-
c-

r
te

finite difference scheme in cylindrical coordinates can a
handle it@18#. The finite volume scheme reported here nee
no assumption of symmetry and thus is capable of handlin
wide variety of complex geometries without modification.
Fig. 6 we show the velocity profile in the angular directio
from the simulation when the system reaches a steady s
compared with the theoretical solution to the Navier-Stok
equation. The radii of the two cylinders areR1550 andR2
5100 and the angular velocity of the outer cylinder isV
50.0005 rad per unit time. The mesh spacing is at the s
of 1 and the relaxation timet is taken to be 0.1. The averag
density r0 is set to be 1.0. We updated the system for
3106 time steps withdt50.01 and observed it to reach
steady state. From Fig. 6 one can see the agreement bet

FIG. 4. ux(y) in the steady state for shear flow between tw
parallel plates located aty50 andy5W531 with shear velocities
ux(0)520.05 andux(W)50.05. Three sets of data~dot, plus, and
circle! are collapsing on top of each other and they correspond
the three types of meshes depicted in Figs. 2~a!–2~c!, respectively.
The straight line is the analytical solution to the Navier-Stok
equation. For irregular mesh, each point is an average of veloci
nodes whosey-coordinates are betweeny21/2 andy11/2 with y
integers.

FIG. 5. An irregular mesh between two coaxial cylinders.
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the computed and the theoretical results is quite good.
relative global difference between the computed velocity a
the exact velocity solution to the Navier-Stokes equation
1.0% where the exact solution@23# is ur

(exact)5ar2b/r with
a5VR2

2/(R2
22R1

2)5 2
3 31023 and b5VR1

2R2
2/(R2

22R1
2)

5 5
3 .

C. Poiseuille flow

We have also simulated a forced two-dimensional chan
flow ~Poiseuille flow! using the finite volume scheme. He
we present the results from simulations on the irregular m
depicted in Fig. 2~c!.

The LBE for the forced system now in general reads a

] f i

]t
1vi•¹ f i52

1

t
~ f i2 f i

eq!1avi•F, ~20!

whereF is the body force applied in the1x direction and the
coefficientsa equals to 1.0/( iv ix

2 51.0/( iv iy
2 51/6. The last

term in the above equation can be taken into considera
easily by the finite volume scheme by integrating over
control volume.

Figure 7 is thex-component velocity profile obtaine
from our simulation. The system has a length ofL531 and a
width of W531 with mesh size in the order of 1.0. Th
forcing level is F50.000 12. We started the computatio
from an initial state with zero macroscopic velocity in th
system. The initial density isr51.0. The system is found to
have reached a steady state after we update the system
T51.53106 time steps. Here the relaxation timet is equal

FIG. 6. The static velocity profile of flow between two coaxi
cylinders~points!, compared with the theoretic solution~curve! of
the Navier-Stokes equationv(r )5ar2b/r with a5

2
3 31023 and

b5
5
3 . Here each point is the average of the angular velocities a

nodes in a circular layer betweenr 21/2 andr 11/2 with r integers.
e
d
s

el

h

n
e

for

to 0.1 and the time difference between two successive t
steps isdt50.01. In Fig. 7 the solid line represents the exa
solution to the Navier-Stokes equationux

(exact)(y)5umax„1
2(y2c)2/b… wherey5c is the location of the center of th
channel andb is the half width of the channel, andumax
5FW2/(8rn) with n the kinematic viscosity. For our sys
tem, b5c5W/2515.5 andn5t/3. The error between the
computed and the exact velocity profile is less than 1.0%

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper we have used the nine-bit model along w
triangular mesh, thus our model is a hybrid model. One
also use the seven-bit model with the triangular mesh
replacing Eqs.~3!, ~4!, and~7! with the corresponding one
used in the conventional LBM models@17#, leaving all the
others unchanged. In the special case of using seven-bi
locities and regular triangular lattice, one can reach a num
cal scheme close to the so-called D2Q7 model. It is th
interesting to make a comparison between this special c
and the D2Q7 model. When using regular triangular latti
for each lattice pointx we have six nearest neighbors~NN’s!.
The seven-bit velocities are equal to the six bond vectorsei)
connecting one lattice site to its NN~given the ‘‘speed of
light’’ to be unity!, along with a zero velocity. They are

e

FIG. 7. Velocity profile for Poiseuille flow in a system of siz
L5W531. The mesh type is of Fig. 2~c! and mesh size is in the
order of 1.0. The forcing level isF50.000 12. We user51.0, t
50.1 anddt50.01. The steady state is reached afterT51.53106

time steps. Here each point is an average of velocity over nodes
y coordinates of which are betweeny21/2 andy11/2 with y inte-
gers. The solid line represents the exact solution to the Na
Stokes equationux

(exact)(y)5umax„12(y2c)2/b… where y5c is
the location of the center of the channel b is the half width of
channel andumax5FW2/(8rn) with n the kinematic viscosity. For
our system,b5c5W/2515.5 andn5t/3.
vi5ei5H ~0,0!, i 50,

~cos@~ i 21!p/3#,sin@~ i 21!p/3# !, i 51,2, . . . ,6. ~21!
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Using the above update procedures described in Sec. II
can write down the explicit update rule for the special case
using regular triangular lattice. It reads

f i~x,t1dt!5 f i~x,t !2
dt

3 (
a50

a56

~vi•ea! f i~x1ea ,t !

2
dt

108tF66d f i~x,t !17 (
a51

a56

d f i~x1ea ,t !G ,

~22!

where d f i5 f i2 f i
eq . For comparison, we have the upda

rule for the D2Q7 model,

f i~x,t11!5 f i~x2ei ,t !2
1

t
d f i~x2ei ,t !. ~23!

One can see there are several differences between the
models. Firstly, the D2Q7 model is an upwind model, whi
means that thef is at one lattice sitex depends only on thef i
at the upstream sitex2ei , given a velocity directionvi ~i.e.,
ei). In our model, contributions from all directions are i
cluded for a given velocity direction.f i at one lattice site
gathers information from all the six NN sites as well as fro
its own site at previous time step. Secondly, the first term
the right-hand side~rhs! of Eq. ~23! can be expressed a
f i(x,t)2@ f i(x,t)2 f i(x2ei ,t)#, which should be compare
with the first two terms of the rhs of Eq.~22!. In our update
equation, the flux term@the second term of the rhs of Eq
~22!# can be viewed as a weighted average of three dif
ences of f i at opposite directions@ f i(x1e1 ,t)2 f i(x
1e4 ,t), f i(x1e2 ,t)2 f i(x1e5 ,t), and f i(x1e3 ,t)2 f i(x
1e6 ,t)]. The flux term in the D2Q7 model is just an upwin
difference off is. Similarly, our collision term is a weighte
average ofd f i at the NN sites as well as at its own site, wh
in the D2Q7 model it is simply ad f i at the upwind site.
Thirdly, by our ‘‘average’’ update rule, the viscosity is n
longer proportional tot21/2 as in the D2Q7 model, but tot.
This means the negative~unphysical! part of viscosity does
not result from our update rule. In the finite difference mod
@18#, it was also observed that the negative part of visco
disappear in a lattice model by taking account the downw
operator.

We should admit that there is a speed slowdown of co
putation compared with the classical LBM models whi
lead to fast numerical implementation and short codes. H
we have to look at a map of the nearest neighbors for
chosen site in the computation. This is due to the lack
regularity in the connectivity of mesh sites. Apart from th
the program is still simple to code. If we do not use unstr
tured meshes, but use the structured~but not regular! meshes
such the ones used in Refs.@14,15#, the speed is two to thre
times slower than the classical LBM models.

It is also interesting to make a comparison between
above scheme and the finite-volume scheme of Succi
co-workers@14#. First, their model is a cell-centered finite
volume method while our scheme is a cell-vertex model.
e
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the model of Succi and co-workers@14#, the ‘‘coarse grain’’
density distribution is the unknown for each macrocell. S
to calculate the flux term they have to extrapolate thef values
from the ‘‘coarse grain’’ density distributions according
the arrangement of macrocells using piecewise constan
piecewise linear extrapolation. Second, in their model,
piecewise constant extrapolation for the streaming oper
causes serious problems of numerical diffusion. Even for
piecewise linear interpolation, numerical diffusion does n
disappear. To minimize this numerical diffusion, a free p
rameter is then needed to be adjusted for each problem
case by case basis. Third, even for the meshes with sim
connectivity of rectangular lattice, their empirical formula
for the streaming coefficients are very complex and o
could imagine the difficulty of using irregular meshes wi
arbitrary connectivity.

Some difficulty in using unstructured meshes also ex
in the model of He, Luo, and Dembo@15#. It is not clear how
to make a unique interpolation on a unstructured mesh fr
density distributions not on the grid points to obtain the de
sity distributions on grid points for the next time step with
this model.

By comparison, our scheme was proposed based on
standard finite-volume methods. It involves a minimum
approximation and does not need to introduce any free
rameters. We have not observed any numerical diffus
problems in our finite-volume scheme. The scheme does
require a special mesh connectivity and it is easy to apply
other kinds of meshes~such as quadrilateral elements in 2
and tetrahedral and hexahedral elements in 3D! by replacing
the standard interpolation we used here for triangular e
ments with other standard interpolation procedure suita
for the relevant elements. The Courant-Friedricks-Lew
~CFL! condition in the current finite volume scheme is fou
to be of the formv idtc/h<1, whereh is a minimum length
scale of the control volume andc is a constant depending o
the shape of the control volume. Thus one can avoid
instability by decreasing the integration time, or by chang
the grid length at some positions.

To conclude, we have proposed a finite volume sche
for the LBM that is flexible to use on any irregular meshe
Complex boundary geometries can be handled easily w
the finite-volume lattice Boltzmann scheme. We have tes
that the finite-volume scheme works well for two
dimensional Taylor vortex flow, shear flows between tw
parallel plates and between two cylinders as well as P
seuille flow. The application of this scheme to a variety
complex geometries is thus expected. Further applicati
and developments of the finite-volume scheme is under w
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